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COMPUTER MECHANIZATION OF REENTRY EQUATIONS 

WITH FOUR DEGREES OF FREEDOM 

By R.  M. Howe 
The  University of Michigan 

1 . Introduction 

An effective  method  for  controlling  the  flight  path of a vehicle  during 

reentry  into  the  atmosphere is to  utilize  aerodynamic  lift  forces. By con- 

trolling  the  bank  angle of the  vehicle  the  lift  force  vector  can  be  directed 

upwards o r  downwards  to  effect  the  down-range  impact  point, or sidewards 

to  effect  the  cross-range  impact  point. In computing  trajectories for such 

vehicles  there  are  fundamentally  four  degrees of freedom which must  be 

represented.  These  are  the  three  translational  degrees of freedom  and  one 

rotational,  namely  the  roll  motion. 

In solving  the  translational  equations for reentry  there  are  sizable 

computing  advantages  in  using a modified  flight-path  axis  system  called  the 

H-frame [ 11. The  purpose of this  report  is  to  add  the  fourth  degree of f ree-  

dom to  these  equations in order  to  allow  the  trajectory  computation  for  lift- 

ing  reentry  vehicles  with  controlled  bank  angle. 

2.  The  H-Frame  Translational  Equations 

The  vehicle  translational  equations of motion will be  referred  to  the 

H-frame.  The H - f r a m e  axes x  z have  their  origin  at  the  center of 

gravity of the  vehicle.  The z axis  is  directed  radially  inward  toward  the 

center of m a s s  of the  earth  and  the x axis is horizontal  and  points  forward h 
in  the  plane of the  motion.  The y axis is therefore  horizontal  and  perpendi- 

cular  to  the  plane of the  motion.  (See  Figure 2 .  1 ) .  The  vehicle  velocity V 

with respect  to  an  inertial  reference frame with  origin at the  center of the 

earth  has  the  horizontal  component U along x and  the  vertical  component 

W along z (positive  downward). By definition  the y component of velocity 
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Figure 2.1.  H-Frame Axis  System. 
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is  zero.  Summing  forces  along  the  H-frame  axes, we obtain  the  following 

three  translational  equations of motion [l]: 

UhWh 
r 

- xh 
" 

m 
T7 

where m is the  vehicle  mass, Xh' Yh' and Z are  the  external  forces  not 

including  inverse-square  gravity  along x and z respectively, r i s  

the  radial  distance  from  vehicle  to  the  center of the  earth,  go  is  the  gravity 

acceleration  at  reference  radius ro ,  and r is  the  H-frame  angular  velocity 

component  along z If we measure  the  flight-path  heading  angle L./J with 

respect  to  an  azimuthal  reference  direction in the  horizontal  plane  (e.  g., 

north),  as  shown in Figure 2 .  1, then  the  following  relation  holds [ 11: 

h 

h' 'h'  h' 

h 

h '  h 

U s i n +  b h = r  + h 
h r t a n L  

or from  Eq. ( 2 . 2 )  

yh Uh s i n +  

r 'h = 
+ tan L (2 .4 )  

where L is  the  latitude.  Finally  the  latitude L and  longitude A a r e  given by 

the  equations [ l]  

Uh cos q J  
L =  h 

r ( 2 . 5 )  

u sin+ x =  h  h 
r n - r  

where r is the  earth  spin  rate.  Equation ( 2 .  1) can  be  integrated  and n 
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. .. 

solved for U to  obtain  the  following: h 
L 

uh = ‘[ r 0 1 5 m dtl + (rUh)l t = o  ] 
This is simply the  angular  momentum integral. Eqs. ( 2 . 3 )  through (2 .7 )  

represent  the  translational  equations for the H- f rame  system,  where we note 

that  the time ra t e  of change of altitude h i s  given by 

Often  for  simplicity  one  neglects  the  earth-rotation  and  assumes  that  the 

azirnuthal  reference  direction  lies in the  plane of the  motion. 

3 .  Rotational  Equations 

In the  discussion  that  follows we will assume  that  the  vehicle  during 

reentry  exhibits a prescribed  angle of attack CY (in  fact, we can  consider 

this a control-input)  but  zero  angle of sideslip.  This  means  that  the body 

axes x, y, z will  differ  from  the  flight-path  axes x and z only by 

the  angle of attack CY, a s  shown in Figure 3 .  1.  We will now proceed  to  de- 

velop  the  equations  for  the  €3-frame  force  components X h, Yh, and  Zh in 

t e rms  of the  flight-path  axis  force  components X Y and Z along  with 

the  relationships  that  include  the  body-axis  roll  rate P. 

w’ yw, W 

w’ w’ W’ 

Let  us  denote  the  flight-path  angular  velocity  components  along  the 

body x,  y, and z axes by  p, q, and r, respectively.  Similarly, we denote 

the  body-axis  angular  velocity  components  along  the  body  axes by P, Q, and 

R ( i .   e . ,  conventional  roll,  pitch,  and  yaw  rates).  Noting  that  the only  dif- 

ference  between  the  flight-path  and  body-axis  angular  velocity  vectors  is  the 

angle of attack  rate &, which is  directed  along  the y axis, we can  write 

p = P ,   q = Q - c u ,  r = R  ( 3 . 1 )  

The  flight-path  axis  angular  rate  components p, q, and r can then  be  trans- 

formed  to  components p and r along  the  flight-path  axes, which,  in w’ qw’ W 
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Figure 3.1.  H-Frame,  Flight-Path,  and Body Axes. 
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terms of P, Q, and R from  Eq. ( 3 .  1)  yields 

pW 

qW 

= P c o s a  + R sin a 

= Q - &  

r = -P s i n a  + R c o s a  
W 

But  the  flight-path  axis  yaw  rate r along z is  given  by r = Y /mv 
and it is   clear  from  Figure  3.1  that  Y = m g o r i  cos 8 sin + /r2 in the 

absence of any side  force  due  to  thrusting o r  aerodynamic  forces.  Thus 

r = g o r o  cos 8 sin + / r 2 V  and  from  Eq. ( 3 . 4 )  

W W w W P 

W W W 

W W W P 

Substituting  this  into  Eq. ( 3 .  2) we obtain 
2 

pW 
=  cos a + s ina   t ana )  + cos e sin + tan a ( 3 . 6 )  r V  W W 

P 
which is  the  required  relationship  between  body-axis  roll  rate P and  flight- 

path  axis  roll-rate p . 
W 

The  flight-path  axis  bank  angle  rate 6 is  related  to  the  flight-path 
W 

axis  angular  velocities by the  formula 
+w - - Pw + iJw sin 8 

W ( 3 . 7 )  

In writing  this  equation we have  neglected  the  angular  rate of the E f rame 

(local  North,  East,  and  downward)  with  respect  to  the I (  inertial)  frame. 

But 4 - in Figure  2.1.  From  Eqs . ( 3 . 6 )  and ( 3 . 7 )  we then  have 
W - 'h 

= P ( c o s a + s i n ~   t a n a )  +-- go ro2 cos8  s i n +  tans+$ sin 8 (3 .8)  
+W r V  W W h 

P 
W 

where from Figure 2 . 1  we see  that 

and 

6 

wh s i n 8  = - -  

P 
W V ( 3 . 9 )  



uh v =  p case 
W 

(3.10) 

Finally,  reference  to  Figure (3.1) shows  that  the  H-frame  force  components 

Xh’  Yh’ and  Zh a r e  given by 

xh = x COS ew + z cos +w s ine  
W 

( 3 . 11) 
W W 

Yh = - Z   s i n +  

Zh = -X s in8  + Z COS + COS 8 

W W 

W W W W W 

The  flight-path  axis  forces X and  Zw  are in turn  given by 
W 

(3.12) 

X W = - t p V 2 A C D  
P 

(3.13) 

and 

Z W = - t p V 2 A C L  (3.14) 
P 

where C is  the  drag  coefficient, is  the  lift  coefficient, A is  the 
D cL 

characteristic  area,  and p is  the  atmospheric  density.  Note  that we have 

neglected  the  effect of earth  rotation  in  using  the  velocity V with respect 

to  the  inertial  reference  frame for  the  dynamic  pressure  calculation. F o r  

an  equatorial  plane  this  can  be  corrected by merely  adding  the  eastward  earth 

velocity  to U in Eq.  (3.10).  For  low-inclination  orbits  such a correction 

would be  approximately  correct. 

P 

h 

For instrumentation  purposes  it  may  be  necessary  to  compute  the 

body-axis  bank  angle + from  the  flight-path bank angle + . In general  this 

relationship  can  be  shown  to  be [3] 
W 

-sin 8 sin p + cos 8 s in+  cos  p 
t a n +  = 

W W W 
. -. - .. I - - 

-sine  siriG6os p - cos e sin +w s ina   s in   p+cos  e cos + cos a (3.15) 
W W W W 

L 

where p is the  sideslip  angle.  Since we have  assumed in the  development 
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here  that p = 0, Eq. (3.15)  can  be  simplified  to  the  expression 

cos 8 sin + 
tan 9 = ~ 

W W 

cos 8 cos + cos (Y - sin 8 sincr 
W W W 

Note  that  for (Y < < 1 and 8 < < 1 Eq. (3.16)  reduces  to  tan + tan + . 
W W 

by  assuming + = + we are only  making  errors of o rde r  CY' and 8 CY. 
W W 

(3.16) 

Thus 

Similarly,  reference  to Eq. (3.8)  shows  that   for CY < < 1 and r 2 ro,  we can 

write 

(3.17) 

where,  again,  the e r ro r   i s  of order  CY'. 

4. Overall  Mechanization 

Figure 4 . 1  shows a block  diagram of the  equations as presented in 

Sections 2 and 3 ,  Although  it is  probably  not  worthwhile  for a reentry  com- 

putation  such as has  been  considered  here,  one  can  add  an  energy  constraint 

to  improve  overall  computational  accuracy [2] in addition  to  the  momentum 

integral  already  incorporated into  the  equation  for  horizontal  velocity U 

It  should  be  noted  that  the  equations in Figure 4. 1 are exact in every  respect 

except  that  the  effect of eastward  component of atmospheric  velocity  due  to 

earth  rotation  has  not  been  included  as  part of the  velocity in the  dynamic- 

pressure  calculation,  and  the  expression  for $ has  neglected  the  rotation of 

the E f rame with respect  to  the I frame  [see Eq. ( 3 . 7 ) ] .  

h '  

W 

Note  that  thrusting  forces  can  be  added  to  the  mechanization in Figure 

4 . 1 .  Since  these  are  normally  referred  to body axes,  they would need  to  be 

resolved  through CY to  the  flight-path  axes  and  then  added  to X and Zw, 

respectively. 
W 

5 .  Use of Dimensionless  Variables  and  Perturbation  Quantities 
~~ ~~ 

In order  to  simplify  the  equations  presented  in  the  previous  sections, 

particularly  with  respect  to  computer  scaling,  it   is  worthwhile  to  introduce 

a number of dimensionless  variables,   First   let   us  define a dimensionless 
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W 
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Figure  4.1. Block Diagram of Four-Degree-of  Freedom  Reentry  Equations. 



perturbation  radius 

6 p  = -  - 1  r 
r0 

Next we note  that  the  circular-orbit  velocity  at  radius ro is given by . 
This  permits  the  definition of the  following  dimensionless  velocity  variables: 

uh u =  
h G G  

wh w =  
h l J g o r o  

and 
V 

- v -  P 
p " J g o r ,  

Finally, we introduce  dimensionless  time T given by 

7 =E t 

( 5 . 3 )  

(5 .4)  

( 5 . 5 )  

In t e rms  of these new  variables  the  translational  equations of motion ( 2 . 3 )  

through  (2.8)  become 

d'h - yh + h u s i n +  
" tan L 
dT mgoUh 1 + 6p 

a -  h u s i n +  
" - r  E 
d-r 1 + 6 p  n 

dL - h  h 
u c o s +  

" 

dT 1 + 6 p  

10  
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(5.10) 

( 5.11) 

Similarly, Eqs. ( 3 .  8 ) ,  (3.9),   and (3.10) become 

- = E P(cos Ly +sins tana) + d+w 1 d'h cos8 s i n +  + - sin 8 (5.12) 
d 7  (1 + 6 P '2Vp W W d-r W 

W h s in8  = - - 
P 

W V 
(5.13) 

U 
- h v -  (5.14) case 

W 

If the  vehicle  computation  involves  one or more  orbits  before  reentry,   then 

there  is  a  scaling  advantage  in  representing  the  horizontal  velocity in terms 

of a  variation, 6u = u - 1 Dl .  h h 

1 1  
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